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Surface width scaling in noise reduced Eden clusters
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The surface width scaling of Edeh clusters grown from a single aggregate site on the square lattice is
investigated as a function of the noise reduction parameter. A two-exponent scaling ansatz is introduced and
used to fit the results from simulations covering the range from fully stochastic to the zero-noise limit.
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I. INTRODUCTION where the width is defined by
The Eden mode€]1], which was originally introduced to
model the growth of cell colonies, is one of the simplest and
most widely studied1-24] growth models and has become
a paradigm for studying self-affine fractal geometry and scaland the surface functioh(x) has the properties

ing in the growth of rough surfacg¢g25-27. In the simplest
variant of the mode(EdenA) aggregate particles are added
one at a time to randomly selected sites on the surface of a
growing cluster{3,4]. The aggregate sites and surface sites
are situated at the vertices of a regular lattice in on-latticat follows from the scaling laws, Eq$2.1), (2.3), that forL
simulations. The initial cluster is usually taken to be a singlelarge the surface of Eden clusters on a two-dimensional sub-
aggregate site in the plarieadial growth or a line of aggre-  strate is a self-affine fractal with Hurst exponenand frac-
gate sites in the half plangubstrate growth Most studies  tal dimension 2 «.

of the Eden model have been concerned with describing the Collective evidence from numerical simulations
asymptotic properties of the surface of the cluster. One of theg 9,11,12,15,1pand algebraic calculatiorjd 3] suggest the
schemes that has been introduced to better reveal these pragdues a=1/2 and z=3/2 (or B=alz=1/3) for two-
erties is noise reduction. Noise reduction is implemented byjimensional Eden growth on a substrate. However, it should
associating a countenitially set to zerg with each of the  pe pointed out that the numerical results are not definitive
surface sites and incrementing the counter by one each timge to finite size effects and the algebraic results may not be
the associated surface site is selected for grg#h-21,23.  entirely applicable since they are based on a continuum
An aggregate particle is then added at a surface site when itaodel that includes surface relaxations.

associated counter reaches a prescribed valubncreasing For an Eden cluster growing in a circular geometry with
values ofm lead to increasingly smoother interfad@®,24. N aggregate particlesy surface sites, and an average radius
It is widely believed that noise reduction reveals asymptotic(R> (which grows linearly with timgthe interface width
surface properties at smaller system sizes without affecting
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the surface scaling exponents. This tenant is investigated in 5 5 , 1 N , [1 N 2
this paper for the EdeA model with growth from a seed on we=(R)—(R) :/T/-Zl Ri—| & Zl Ri 2.4
a square lattice. = =
is expected to scale §$3]
Il. SURFACE SCALING ANSATZ
w~(R)~. (2.9

Extensive studies of Eden growth from a substrate

[6,9,10,12,14-17,19-21 Rdave identified scaling expo-
nentsa and z relating the surface thicknesg to the sub-
strate widthL and the mean surface heigfft). For a cluster
with N aggregate particles antl surface sites this relation-
ship has the form8]

W~L“f(<h>), (2.1

L
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Numerical simulations of EdeA clusters on the square lat-
tice with up toN~10° aggregate particles again sugggst
=1/3. However, very large simulations fdf~ 10’ [12] and
N~ 10° [16] reveal the increasingly dominant effects of lat-
tice anisotropy where eventually it is expectdd] that w
~(R). In this paper we have carried out brute force simula-
tions of the EderA model on the square lattice starting from
a single aggregate site over a rangenoffrom the fully
stochastic limitm=1 to the zero-noise limin—co [24]. The
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brute force calculations avoid the possibility of numerical
bias from, e.g., quadrant boundary effeft&] or multiply

selected surface sit¢46]. The results of the simulations are
shown to be consistent with a two-exponent scaling ansatz of 19}

the form
g
a(mNY®  for N<N*(m) 0 z
N ~ . B
WINM =)y mNY2 for NsN*(m), (2O
whereN* (m) denotes an empirical crossover number of ag- 1001

gregate patrticles for a givan. This is in agreement with the
expectation that noise reduction does not affect the values of
the scaling exponents; however, the crossover value

a(m)\3

b(m)

* —
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FIG. 1. Plots of the surface width vs the number of aggregate

is m dependent. The two-exponent scaling ansatz can also Iparticles for different values of the noise reduction parameter at one

written in the functional form

w(N,m)~b(m)N¥?g

N*(m))’
where

x 1B forx<1
1 forx>1.

9(x)=

Ill. ZERO-NOISE LIMIT

unit intervals in the rangene[1,64] and for the zero-noise limit
(dashed curve Note the logarithmic scale on each of the axes.

(2.8 starting from a single seed on the square lattice. Each en-
semble consists of 100 Monte Carlo simulations of the Eden
A model for a fixed value of the noise-reduction parameter
m. The surface width, Eq2.4), is averaged over the en-

2.9 semble copies to obtain the surface width as a functioN of

for a givenm.

Figure 1 shows plots of the ensemble averaged surface
width versus the number of aggregate parti¢lesing a log-
log scale for m at one unit intervals in the rangm

In the zero-noise limitm—«, Eden A clusters on a 6[1,64] and form—o (daSh?d ling The curves for in-
square lattice grow in layers as a compact diamond [@#h  creasing values ah are from right to left on the right-hand

N.=2k’—2k+1, k=1,2,...

aggregate particles. In this limit there is no stochastic growt@

so that

lim N* (m)—0

m— o
and

lim w(N,m)~b(s)NY2,

m—o

side of the plot and upper to lower on the left-hand side of
(3.D)  the plot. The peaks in the sawtooth pattern for langend
small N occur at exact “diamond numbers,” E3.1). The
urface width data were fit to the two-exponent scaling an-

satz, Eq.(2.6). In Fig. 2 the best fit estimates féa) a(m)
(3.2) and (b) b(m) are plotted againgin at one unit intervals in

the rangeme[1,64]. Figure Zb) also shows(dashed ling

the asymptotic value df(e°) obtained from the calculation

in the zero-noise limit, Eq3.5). The surface profile of very

large Eden clusters an=1 is slightly anisotropic and well

33 it (in the first quadrantby

A simple approximation td() can be found from the con- R(6)=(R)+Acos(46), 4.2
tinuum expression for a diamond in polar coordinates:

~ N
V2[|sin(6)|+|cog 0)|1

R(6)

where(R)~ N/ is the average radius of the cluster akd
(3.4 is the amplitude of the anisotropabout 1% of(R) [16]).
The anisotropic profile, Eq4.1), has a surface width

The averages ovef can be calculated exactly yielding

" \/ L aanh (1h2)°

T P
and hence()~0.05896. .. .

IV. NUMERICAL RESULTS

A
w~ —=N2, (4.2

(3.5 e

Our valueb(1)=~0.005 is thus consistent with a slight an-
isotropy of the order oA~ = 1%(R).

The functional form of the two-exponent scaling ansatz,
Eq. (2.8), is clearly revealed in Fig. 3 where we have col-

The results described in this section summarize data frortapsed the surface width data for &llandm values onto a
our numerical simulations of ensembles of Edertlusters  single curve by plotting
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_ 0.04! ﬂeﬁwa_‘:ové‘w
§ ﬁ,w‘” <N* and v=1/2 for N>N* were found to be independent
0.03] P,.»”’ of the noise reduction parameter but the crossover value
S N* was found to decrease monotonically with These re-
7 sults support the tenants thé) noise reduction does not
0027 : ; .
g affect the scaling exponents in Eden-like growth models and
7 (i) increasing noise reduction decreases the size of clusters
0.017¢ needed for observing the limiting lardé scaling behavior.
In particular, provided the scaling coefficients do not vanish
(b) 10 20 30m 40 >0 in the limit m—«, the largeN scaling exponents could be

FIG. 2. Plots of the surface width scaling coefficients in Eqg.
(2.6) as a function of the noise reduction parametar:a(m) ver-

susm and (b) b(m) versusm.

w(N,m) N
——- Versus .
b(m)N?2 N* (m)

The dashed line in Fig. 3 has a slope —1/3.

V. DISCUSSION

In this paper we showed that the surface width of noise-
reduced EderA clusters grown from a seed on a square

found rather simply from exadtlgebraic or numericakal-
culations in the zero-noise limit. On the other hand, interme-
diate scaling results from finite simulations would have to
be interpreted with some caution particularly in cases where
the growth is characterized by multiexponent scaling laws
and multiplem-dependent crossover values. It is anticipated
that a similar two-exponent scaling relation to E2.8) with

the same two scaling exponents but different coefficients
a(m) andb(m) could be used to characterize on-lattieeg.,
square, triangular, or honeycojngrowth of other variants of
the Eden mode{e.g., EderB and EderC).
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